

Overview

- ≥ 2015-16 Cloud season results
 - Payette Target-Control
 - Basin-wide Target-Control results
 - WRF modeling results
 - WRF model example
- ➤ 2016-17 Project overview
- **>** SNOWIE

Target – Control

Target Control Analysis % Change by Basin	
Payette River Basin	11.5%
Boise River Basin	9.4%
Wood River Basin	5.4%
Northern Upper Snake Basin	4.3%
Eastern Upper Snake Basin	5.4%

WRF/WRF Cloud Seeding Module

- ➤ Weather Research and Forecasting model
 - High resolution 5.4km & 1.8 km
 - Calibrated for the Snake River Basin
 - Provides spatial estimates of natural precipitation and temperature
- ➤ Cloud Seeding Module
 - Uses WRF
 - Provides cloud seeding guidance for operations
 - Provides estimates cloud seeding precipitation enhancements
- ➤ Both work with WRF-Hydro
 - Provides flow enhancement estimates

IPC 2016-17 Cloud Seeding Program

Payette, Boise, Wood & Upper Snake

Payette

- 17 Remote Gen's
- Aircraft
- Radiometer
- Weather Balloon
- Weather Tower
- 8 hi-res precip gauges

Boise and Wood

- 13 Remote Gen's
 - 2 New 2016-17
- Aircraft
- Radiometer
- Weather Balloon
- Weather Tower
- 3 hi-res precip gauges

Upper Snake

- 25 Remote Gen's
- 25 Manual Gen's
- Aircraft
- 2 Radiometers
- 2 Weather Balloons
- Weather Tower
- 2 hi-res precip gauge

SNOWIE

Seeded and Natural Orographic Winter time clouds—the Idaho Experiment

- ➤ A National Science Foundation funded research project focused in the unique and very complex terrain of the Payette River Basin. Jan-Mar 2017
- ➤ A comprehensive observational and modeling research program involving multiple research institutions and Idaho Power.
- To understand the natural dynamical and microphysical processes by which precipitation forms and evolves within orographic winter storms.
- To determine the physical processes by which cloud seeding with silver iodide (AgI), either from ground generators or aircraft, impacts the amount and spatial distribution of snow falling across a river basin.

SNOWIE Core Scientific Objectives

- Natural Cloud Structure: Evaluate the role of mesoscale and microscale dynamics and of the underlying terrain in the formation, growth, and fallout of natural ice crystals in winter storms through observations
- Investigate how the natural snow growth process is altered as a result of airborne and ground based AgI seeding through both observations and model simulations
- Evaluate the effectiveness of aircraft ground seeding on snowfall amount and distribution
- Incorporate key results on the dynamical and microphysical processes into WRF and other national level weather models to improve US weather forecasting capabilities.

Project Investigators

- National Center for Atmospheric Research, Research Applications Laboratory
- University of Wyoming, Department of Atmospheric Sciences
- University of Colorado at Boulder, Department of Atmospheric and Oceanic Sciences
- University of Illinois at Urbana-Champaign, Department of Atmospheric Sciences
- Boise State University, Department of Geosciences
- Desert Research Institute, Division of Atmospheric Sciences

Project Equipment

Cloud Seeding Equipment

Seeding aircraft (King Air C200)

17 remotely operated cloud seeding generators

Meteorological Equipment

University of Wyoming King Air research aircraft

- 95 GHz Wyoming cloud radar
- Cloud lidar
- 2 Doppler on Wheels (DOW) X-Band dual-polarization radars
- 6 microwave radiometers
- 6 Vertical-pointing microwave radars
- 14 High resolution precipitation gauges
- 1 High resolution downward looking radar for snow water equivalent
- 25 Meteorological stations
- 3 Radiosondes (Weather Balloons)
- 25 Assorted pieces of meteorological equipment

Mobile research instrument van to provide inflow atmospheric measurements

Other Resources and Facilities

WRF model (5.4 km & 1.8 km) and NCAR FINECAST model (3.0 km)

Boise State University, Trace Chemistry Laboratory

Yellowstone supercomputer center

